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Introduction
Longitudinal studies and methods are essential to many research questions in educa-
tion sciences. Questions of learning, growth, and development are studied by examining 
change over time (Millsap, 2008; Singer, 2019). Moreover, if researchers are interested in 
causal relationships between several constructs, the temporal order, as realized in lon-
gitudinal studies, is one important prerequisite (among others) for drawing robust con-
clusions (Shadish et al., 2002). One challenge associated with longitudinal studies is the 
choice of the appropriate statistical model for the data analysis. The statistical models 
should correspond with the research questions at hand and the theoretical assumptions 
about the constructs and the processes underlying them (Baltes & Nesselroade, 1979; 
Collins, 2006; Little, 2013; McArdle, 2009). A close fit between theories of change and 
the models used to analyze the data is a prerequisite for valid inferences.
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One class of models that is frequently applied in educational research is dynamic 
models, which include, for example, (vector) autoregressive models (e.g., Hsiao, 2014; 
Lütkepohl, 2005), cross-lagged panel models (e.g., Hamaker et al., 2015; Usami et al., 
2019; Zyphur, Allison, et al., 2020; Zyphur, Voelkle, et al., 2020), or latent change score 
models (McArdle & Hamagami, 2001). These models usually treat time as discrete, 
which is why they are often called discrete-time dynamic models (DTMs; e.g., Hsiao, 
2014; Voelkle et al., 2018). DTMs, however, are limited by the widely recognized time-
interval dependency (e.g., Gollob & Reichardt, 1987; Ryan & Hamaker, 2021). This 
means that dynamic parameters of DTMs depend on a respective time-interval. Thus, 
they cannot represent the continuous nature of developmental processes and do not 
provide information regarding other time intervals, which is a considerable limitation 
in several other regards (e.g., Voelkle et  al., 2012). For this reason, continuous-time 
dynamic models (CTMs) have been put forward in recent years (van Montfort et al., 
2018).

In the present study, we adopt these ideas and outline potential advantages of CTMs 
over DTMs for longitudinal data analysis in educational research. In addition, we focus 
on how trends can be integrated into dynamic models. Besides the analyses of process 
dynamics, trends are additional characteristics of longitudinal data and are often of core 
interest in educational research. Several models have been proposed to capture trends 
and dynamics simultaneously and are discussed in ongoing debates (e.g., Asparouhov 
et al., 2018; Hamaker, 2005; Núñez-Regueiro et al., 2021; Usami et al., 2019). However, 
to date, most of them employ discrete-time modeling to represent the dynamic part (but 
see, e.g., Delsing & Oud, 2008). Dynamic models that provide information on trends and 
dynamics on a continuous-time scale, would overcome this limitation. In the present 
article, we propose a combined model that provides information on both the continu-
ous-time dynamics and trends that we call the continuous-time latent curve model with 
structured residuals (CT-LCM-SR). The model is a continuous time version of the exist-
ing latent curve model with structured residuals (LCM-SR; Curran et al., 2014; Hamaker, 
2005). We illustrate the application of the CT-LCM-SR with data from the PISA reading 
literacy assessment using the R package ctsem (Driver & Voelkle, 2018a, 2021). In doing 
so, two research questions are examined. (1) Is there a trend in the PISA countries’ mean 
reading scores over the period from 2000 to 2018, and do the countries differ in the slope 
and direction of the trend? (2) How persistent are deviations from the trend? The lat-
ter research question tackles the stability of educational systems when deviations from 
the trend (so-called shocks or impulses) occur. Influences leading to temporary gains 
(positive deviations from the trend) could be, for example, temporary investments or 
short-term interventions initiated by a country’s politics. Influences which might result 
in negative deviations can be political unrest, a shortage of teachers in a given cohort, or 
a global financial crisis or pandemic. Thus, the stability of a system could be thought of 
as the system’s resilience against disturbances. Clearly, this is oftentimes a double-edged 
sword, as a high persistence of positive deviations is often desired, which would be the 
case in an instable or non-resilient system. Contrarily, negative disturbances are often 
desired to dissipate quickly, which would be the case if the system is stable or resilient.

In our illustration, we show how the CT-LCM-SR can be used to answer both research 
questions. Thereby, we compare the CT-LCM-SR to related models, exemplarily 
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interpret the parameter estimates of the CT-LCM-SR, and present some details and 
ways of visualizing results to emphasize the advantages of CTMs over DTMs.

This article is aimed at two audiences. In the first section, we introduce CTMs in gen-
eral and give arguments for why the use of CTMs can be beneficial. This section may be 
particularly interesting to readers who are new to continuous-time modeling. For read-
ers who are already familiar with this type of modeling, we provide detailed information 
on the implementation and interpretation of the newly proposed CT-LCM-SR model in 
the methods section. Furthermore, readers get a practical introduction to the use, mode-
ling, and interpretation of CTMs. Finally, the strengths and limitations of the illustrative 
example in particular and CTMs in general are discussed. The discussion also includes 
an outlook on more complex (multivariate) applications of the CT-LCM-SR.

How variables develop over time and how we measure this development
When longitudinal studies are conducted in educational research, the data are usu-
ally repeated measurements of the same constructs and target units (e.g., subjects). For 
instance, questionnaires or achievement tests are repeated multiple times, each after a 
certain period of time. Based on such snap-shots in time, we gain insights about the state 
of our target units (Fig. 1A). Between these measurement occasions, we have no data and 
thus no information about the changes of the variables under study. The stability, iner-
tia, development, change, or longitudinal association of multiple variables in multivari-
ate analysis must be inferred from these repeated snapshot-like data. In many theories 
of change, however, the observation units and variables of interest are not assumed to 
exist only at the measurement occasions or to change in discrete steps (Fig. 1B). Rather, 

Fig. 1 Differences between measurement of change (A), modeling of change (B, D) and theories of change 
(C). Panel A Simulated data for a single observation unit examined at ten measurement occasions. Panel B 
DT autoregressive effects are usually interpreted by reference to a constant process mean. The process mean 
is represented by the horizontal dotted line. Panel C In theories of change, it is usually assumed that there is 
continuous existence of observation units and continuous change of variables, which is represented by the 
solid line connecting successive measurements. Panel D A linear trajectory smoothed through the data, as is 
done in (linear) growth-curve models. The model-implied trajectory interpolates any time point and can be 
used to predict values for any time-interval using time as a continuous predictor
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we assume that observation units and variables under investigation exist and develop 
continuously over time (Fig. 1C). This is applicable to variables at the level of individu-
als, such as the development of students’ competencies, cognitive abilities, self-concepts, 
attitudes, and motivations. Moreover, this continuous-time perspective is transferable 
to social systems and variables at the level of school classes, variables describing par-
ent–child-teacher interactions, or the performance of entire education systems as stud-
ied, for instance, in the international large-scale assessments (LSAs) such as PISA and 
TIMSS. Although there are typically several years between each measurement occasion 
in LSAs, we do not assume that the characteristics of education systems cease to exist 
in the interim. Thus, from a theoretical point of view, it is desirable to adopt the idea of 
continuously developing variables also in the statistical models used. As shall become 
apparent in the following sections, this not only allows us to align models closer with 
theories of change, but also provides further advantages, such as greater flexibility for 
the procedures of data collection, improvements for cross-study comparisons (e.g., Voe-
lkle et al., 2012), or the exploration of the unfolding of dynamic effects (e.g., Hecht & 
Zitzmann, 2021a).

Discrete‑time dynamic models (DTMs)

Dynamic models represent the state of variables at time ti as a function of previous states 
(e.g., at time ti−1 ) of the same variables (Deboeck & Boker, 2015; Hsiao, 2014; Voelkle 
et al., 2018). Typical questions that can be addressed with dynamic models are questions 
related to the stability or inertia of constructs over time, to find out, for example, how 
fast the states of variables change (or can be changed). Dynamic models can also be used 
to address questions about the variability of states of a construct or questions about the 
predictability of future states (based on the current state) (Deboeck & Boker, 2015; Loos-
sens et al., 2021). Well-known dynamic models in educational research are multivariate 
models, such as the cross-lagged panel models (CLPM). In terms of Granger causality, 
such models usually aim to provide insights into the strength and predominant direc-
tion of the relationship between the variables of interest (Granger, 1969; Hamaker et al., 
2015).

In educational research, many dynamic processes are modeled by first-order models 
such as the first-order autoregressive model (AR(1)) or its multivariate variant, the vec-
tor autoregressive model (VAR(1))1 (Sivo & Fan, 2008). In VAR(1) models, the present 
state of variables is predicted by the previous state. A discrete-time VAR(1) model can 
be represented by the following equation (cf. Oud & Delsing, 2010; Voelkle et al., 2012):

Here, x is a column vector of length V  (number of variables), observed at time ti (with 
i = 1, . . . ,T  , where T  is the number of measurement occasions) and �ti the time inter-
val between two measurement occasions. A is a V × V  matrix relating the observed 
variables over time (autoregressions on the main diagonal, cross-lagged effects on the 

(1)x(ti) = A�tixti−�ti + b�ti + wti−�ti with (wti−�ti) ∼ N (0,Q�ti)).

1 The term AR or VAR model stems from the tradition of time series analysis. In classical time series analyses, only a sin-
gle unit (N = 1) is often examined (e.g., Ryan et al., 2018). The term CLPM can be understood as a label for a version of 
the VAR model for panel data (cf. Kuiper & Ryan, 2018), with the caveat that sometimes, the lagged coefficients are not 
equated across measurement occasions in CLPMs (Sivo & Fan, 2008). Because panel data are the norm in educational 
research, the term VAR model is used in the following to refer to the panel VAR model (Hsiao, 2014; Sivo & Fan, 2008).
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off-diagonals), b is an intercept vector of length V  , and w a vector of prediction errors or 
white noise (e.g., Deboeck & Preacher, 2016; Oud & Delsing, 2010). Covariance matrix 
Q�ti contains prediction error variances and covariances. From this representation of a 
VAR(1) model, it is apparent that the coefficients of interest, in particular the autoregres-
sive and cross-lagged coefficients of the matrix A , depend on the time-interval �ti ( �ti = 
ti − ti−1) between successive measurement occasions. For example, if this interval length 
is three months, the estimated coefficients are conditional on exactly this time-interval 
and are not valid for any other interval. Thus, the process described by the parameters 
corresponds to the development of a variable or an observation unit that exists only at 
the time points of measurement, illustrated in Fig.  1A. However, as discussed earlier, 
in most cases this representation is not consistent with theory that assumes that vari-
ables and observation units exist and change continuously over time (Fig. 1C). This time-
interval dependency is also referred to in literature as the interval problem of DTMs (e.g., 
Ryan & Hamaker, 2021). This dependency results in several drawbacks, which have been 
described in detail elsewhere (e.g., Hecht et al., 2019; Oud & Delsing, 2010; Voelkle et al., 
2012) and will only be briefly mentioned here: (1) The information about the dynamics 
of the variables under study that DTMs reveal only relates to the particular time-interval 
used (e.g., Deboeck & Preacher, 2016; Kuiper & Ryan, 2018). (2) There is no informa-
tion about how the dynamic effects change with increasing time-intervals (e.g., Hecht & 
Zitzmann, 2021a). Moreover, (3) (approximately) equal spacing between measurement 
occasions must be realized across all units in order to be able to properly apply DTMs2 
(see Driver et al., 2017). Establishing equal spacing is a major challenge, especially when 
using flexible survey designs (de Haan-Rietdijk et al., 2017) whose importance has been 
increasingly emphasized for educational research in recent years (Zirkel et  al., 2015). 
The time-interval dependency of DTMs also has disadvantages since (4) results from 
studies examining different time-intervals between measurement occasions are not 
directly comparable with each other, making it difficult to conduct meta-analyses on 
these results (Dormann et al., 2020). Continuous-time dynamic models (CTMs) resolve 
these problems.

Continuous‑time dynamic models (CTMs)

The assumption of variables that exist and unfold continuously is consistent with CTMs 
(e.g., Kuiper & Ryan, 2018; Oud & Delsing, 2010). By using CTMs, we obtain not only 
the same information provided by DTMs if all underlying assumptions are met, but also 
parameters that are independent of the length of the time-intervals of a given study. These 
continuous-time parameters allow for gaining insights into the underlying continuous-time 
process and for deriving discrete-time parameters for various time-intervals (Hecht et al., 
2019; Voelkle et al., 2012). In addition, CTMs overcome the practical drawbacks and limi-
tations of DTMs outlined above (e.g., Oud & Delsing, 2010; Voelkle & Oud, 2013). How-
ever, the implementation of CTMs is mathematically more challenging than that of DTMs 
because CTMs require differential calculus (Deboeck & Boulton, 2016; Voelkle et al., 2018). 
Fortunately, the application of CTMs has been greatly facilitated in recent years by software 

2 One possible solution to address unequally spaced measurement occasions using DTMs is the so-called phantom-
variable approach, but this approach is limited to few unequal intervals. Furthermore, other drawbacks associated with 
the interval-dependency of DTMs remain (see Oud & Voelkle, 2014).
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packages like the R package ctsem (Driver et al., 2017; Driver & Voelkle, 2017, 2018a, 2021). 
As a result, the application of a wide range of CTMs is now possible in a relatively straight-
forward manner.

The basic stochastic differential equation (SDE) used in ctsem can be represented as fol-
lows (Oud & Delsing, 2010; Voelkle et al., 2012; for an overview of different notation styles 
of the same equation see, e.g., Hecht & Zitzmann, 2021a):

The derivative dx(t)
dt

 provides information about the rate of change of the variables in the 
column vector x of length V  at the time t (Deboeck & Boulton, 2016; Ryan et al., 2018). 
The term can be thought of as the change dx in the variable x over the time-interval dt , 
which, in case of the derivative, is infinitesimally small ( �ti → 0). The expression dx(t)

dt
 is also 

referred to as velocity (Deboeck et al., 2015). Given the information regarding the rate of 
change at time t , we know how the process under study is changing at that time (Ryan et al., 
2018). The rates of change of the variables x , shown on the left side of Eq. 2, is explained 
by a deterministic and a stochastic part on the right side. The deterministic part is com-
posed of the so-called drift matrix A , which is a V × V  matrix and includes the continuous-
time auto-effects (equivalent to autoregressive effects in DTMs but independent from the 
length of time-intervals) on the main diagonal and the continuous-time cross-effects on the 
off-diagonals, the state of the variables x at time t , and a V × 1 continuous-time intercept 
vector b . GdW(t)

dt
 represents the stochastic part of the equation and can be described as a 

continuous-time error process (Oud & Delsing, 2010; Ryan et al., 2018). W(t) is the so-
called Wiener process, which is a random walk in continuous-time and the Cholesky factor 
G indicates the effect of W on the change in x(t) (for details see Driver & Voelkle, 2018a; 
Oud & Jansen, 2000). Because the variance of the Wiener process depends on the length 
of the time-interval over which it is integrated, it can represent the accumulation of errors 
over longer time periods, resulting in larger error variances (Deboeck & Preacher, 2016; 
Oravecz et al., 2011). The associated V × V  variance–covariance matrix Q = GG′ is often 
called diffusion matrix and contains the process error variances on the main diagonal and 
the process error covariances on the off-diagonals.

Based on the continuous-time (CT) parameters of Eq. 2 it is possible to calculate the 
DT parameters for any given time-interval (Hecht et al., 2019; Oud & Delsing, 2010). To 
better distinguish between CT parameters and its corresponding DT parameters, in the 
following, DT parameters that are constrained to underlying CT parameters are denoted 
with an asterisk (*) (cf. Hecht et al., 2019). For an overview of corresponding DT and CT 
parameter labels, see also Hecht and Voelkle (2021). The CT drift matrix A is related to 
the DT autoregressive matrix A∗

�ti
 via the following equation:

The CT intercept vector b is related to the DT intercept vector b∗�ti
 via the following 

equation:

(2)
dx(t)

dt
= Ax(t)+ b+G

dW(t)

dt
.

(3)A∗

�ti
= eA�ti .

(4)b∗�ti
= A−1

(

eA�ti − I
)

b.
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Furthermore, the DT error covariance matrix Q∗

�ti
 for interval ∆t can be calculated 

from the CT diffusion matrix Q (Delsing & Oud, 2008):

where I is an identity matrix, ⊗ the Kronecker product, which results in a large matrix 
containing all possible products of the elements of the two initial matrices, row and irow 
are operators, the former puts the elements row-wise in a column vector and the latter 
puts them from a column vector into a matrix. To solve the system of Eqs.2, 3, 4, 5, the 
matrix exponential has to be used (e.g., Oud et al., 2018; Ryan et al., 2018). Details and 
examples of the link between the parameters and their interpretation will be described 
in the methodical and results section of the article. Before doing so, however, we address 
another challenge that often arises when analyzing longitudinal data in education sci-
ences: systematic trends.

Trends

Analyzing longitudinal data in educational research is often also about identifying 
trends. For example, when studying students’ achievement repeatedly over several 
months and years, their achievement typically continues to increase. Such systematic 
trends can also occur when examining other variables, such as motivational (e.g., Wig-
field et al., 2006, 2015) or personality-related characteristics (e.g., Specht, 2017). Further-
more, besides the theoretical interest in trends, it is also often important for dynamic 
models to account for such trends. Unaccounted trends can affect the autocovariance 
structure and thus lead to biased estimates of the parameters (e.g., Asparouhov et  al., 
2018; Núñez-Regueiro et al., 2021; Walls & Schäfer, 2006). Therefore, there are several 
approaches to deal with trends in dynamic models, such as pre-detrending the data 
(e.g., Box et al., 2015; Walls & Schäfer, 2006). Another possibility is to model trends and 
dynamics simultaneously. Growth-curve models (GCM) are a well-known approach to 
model trends (Fig. 1D) (e.g., Bollen & Curran, 2006). There are approaches that combine 
dynamic DTMs with GCMs, such as the autoregressive latent trajectory (ALT) models 
(e.g., Bianconcini & Bollen, 2018; Bollen & Curran, 2006; Curran et al., 2014; Hamaker, 
2005). In addition to all the other disadvantages of DTMs already described, approaches 
combining elements from DTMs and GCMs come with a model-inherent unequal time-
interval dependency of parameters: While GCM-parameters are usually treated and 
interpreted as independent from time-intervals (Fig. 1D), the DTM parameters depend 
on the time-interval used in the study (Delsing & Oud, 2008). Thus, in combined mod-
els such as ALT models, the trend parameters describe a continuous process (Fig. 1D) 
and the dynamic parameters describe a discrete-time process (Fig. 1B). To remove this 
inconsistency from combined models, a promising solution is to use CTMs to make the 
dynamic parameters independent of time-intervals as well. One of the very first explicit 
formulations of a combined model in continuous-time is the continuous-time autore-
gressive latent trajectory (CALT) model proposed by Delsing and Oud (2008; see also 
Oud, 2010).

However, ALT and CALT models are associated with other considerable limitations. 
Trends and dynamics are not clearly separated in ALT and CALT models and can 

(5)Q∗

�ti
= irow

[

(A ⊗ I+ I⊗ A)−1
(

A∗

�ti
⊗ A∗

�ti
− I⊗ I

)

row(Q)

]

,
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influence and “compete” with each other. An associated problem is that dynamic mod-
els are recursive, which means that dynamic processes depend on their previous values. 
This is not the case for GCMs. These problems lead to drawbacks, such as the need for 
special solutions to “start up” ALT and CALT models and uncertainty of how to interpret 
GCM parameters in ALT and CALT models (e.g., Bianconcini & Bollen, 2018; Hamaker, 
2005; Jongerling & Hamaker, 2011; Little, 2013; Oud, 2010; Usami et al., 2019).

To clearly isolate trends from the dynamic part of the model, the discrete-time (DT) 
latent-curve model with structured residuals (LCM-SR) has been suggested as one suit-
able alternative (Curran et al., 2014; Hamaker, 2005). In the LCM-SR, the development 
of a variable under study is described by two different process components, trends 
and dynamics, which are—contrarily to the ALT or CALT models—clearly separated 
(Fig. 2). Because the trend component (which is similar to what is modeled in the GCM) 
accounts for the trends in the data, the dynamic component represents a trend-adjusted 
(detrended) and centered process in the LCM-SR (Usami et al., 2019). For this reason, 
systematic (linear) trends are disentangled from the autoregressive and cross-lagged 
parameters. An additional advantage of this separation is that the parameters of both 
processes can be interpreted as is typically done in CTMs and GCMs. Moreover, trend 
parameters and dynamic parameters do not compete in a joint process in the LCM-SR 
as in the ALT and CALT models (see Curran et al., 2014; Hamaker, 2005; Jongerling & 
Hamaker, 2011).3

To our knowledge, an explicit formulation of a continuous-time version of the LCM-
SR has not been proposed in the literature, although a continuous-time latent curve 
model with structured residuals (CT-LCM-SR; Fig.  2) comes with several advantages: 
(1) Using the CT-LCM-SR, information is obtained describing trends in the data as well 
as information describing the process’ dynamics on a continuous-time scale. (2) Trends 
and dynamic processes are clearly separated in CT-LCM-SR, meaning that trends and 
dynamics can no longer influence each other. (3) The interpretation of the parameters 
follows the interpretation of CTMs and GCMs. (4) All parameters of the CT-LCM-SR 
describe the process under study independently of the length of time-intervals in a given 
study. This is not the case for the DT-LCM-SR in which the dynamic parameters always 
depend on the length of the time-interval (cf. Delsing & Oud, 2008; Oud, 2010). Finally, 
(5) both the standard linear GCM and the CT-AR(1) model (which is a CTM without 
trend components) are nested within the CT-LCM-SR which enables chi-square differ-
ence testing to compare models. In addition, with the CT version of the LCM-SR, we can 
take advantage of all the other benefits associated with using CTMs instead of DTMs.

Methods
The CT‑LCM‑SR

The basic idea of the CT-LCM-SR is to decompose a process into the two process 
components, trends and dynamics. This is technically done by introducing two con-
tinuous-time processes with special parameter values and constraints, so that one con-
tinuous-time process purely captures the trend and the other one the dynamics (see 
technical details below, especially Eq. 8 and 9). In the following, we therefore also refer 

3 Curran et al. (2014) also elaborate in detail on the advantage of disentangling between-unit differences in trends from 
the dynamics taking place at the within-unit level (see also Núñez-Regueiro et al., 2021).
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to the trend component as the “trend (or growth) process” and to the dynamic compo-
nent as the dynamic process with the need to keep in mind that these are just technical 
terms for the two components of one single process variable.

The univariate CT-LCM-SR is thus composed of two process components, one to 
describe the linear trend and one to model the dynamics of one process variable. When 
including more variables, each variable would need two processes to represent its two 
process components, for instance, a bivariate CT-LCM-SR would then include four pro-
cesses, a trivariate CT-LCM-SR six, and so forth. The ordering of the two processes is 
arbitrary. We use the first process as the linear growth process that accounts for initial 
values and trends (Fig. 3A). The second process is then the dynamic process that provides 

Fig. 2 Continuous-time Latent Curve Model with Structured Residuals. The CT-LCM-SR with four 
measurement occasions: Manifest scores xjt are represented by the squares. On the bottom of the squares, 
there is the trend process (standard linear growth-curve process with random effects for intercept and slope) 
accounting for differences in the initial values and trends. The continuous-time dynamic process, which 
accounts for the dynamic structure is represented on the top of the squares. Estimated parameters: int mean 
intercept, intSD variance of the random effects of the intercept, b mean growth rate, bSD SD of the random 
effects of the growth rate, Corint ,b intercept-growth correlation, T0dynSD initial SD of the dynamic process; A 
drift matrix, Q diffusion matrix
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information about the process’ dynamics on a continuous-time scale (Fig. 3B).4 Since the 
growth process accounts for nonzero initial values (intercept parameter) and for linear 
trends (growth parameter), the dynamic process can be considered as centered and lin-
early detrended (cf. Usami et al., 2019). By combining the two process components in 
one model, the values can be thought of as fluctuating around the linear trend (Fig. 3C).

Just as in growth-curve modeling, CT-LCM-SR can account for differences between 
observation units in intercept and growth parameters via random effects (e.g., Bollen & 
Curran, 2006; Little, 2013). Thus, the dynamic process is within-unit centered. If poten-
tial differences in trends and initial values between observation units are not taken into 
account, within and between level effects can be confounded (see also the discussion 
of the use of random effects in dynamic models by, e.g., Hamaker et al., 2015; Lüdtke & 
Robitzsch, 2021; Núñez-Regueiro et al., 2021; Usami et al., 2019).

Using the SDE (Eq. 2), growth-curve models can be specified as special cases (Driver, 
2020). To illustrate the application of a CT-LCM-SR with the SDE, we first consider a 
single growth-curve process.

To obtain a GCM with the SDE, the CT auto-effect is set to a negative value 
very close to zero (e.g., −  0.0001). This means, that the corresponding DT autore-
gressive effect ( a∗�ti

= ea�t ) approximates 1. The freely estimated initial value x0 

Fig. 3 Combination of trend (A) and dynamics (B) in the CT-LCM-SR (C) in comparison to a CT-AR(1) model 
(D). Same simulated data as used in Fig. 1. Panel A CT-LCM-SR-implied trend. Panel B continuous-time 
dynamic process of the residuals. Panel C Putting trend and dynamic process together. Panel D A standard 
CT-AR(1) model, which ignores any trend in the data. Black solid lines visualize model implied expected 
trajectories (given past observations). The model implied predictions of the CT-LCM-SR (Panel C) are a 
combination of the static trend component (Panel A) and the autoregressive structure of the residuals over 
time as reflected by the CT auto-effect (Panel B). The dynamic part gives information on how much of the 
deviation from the trend on time T is expected to be carried over to future states with growing time intervals. 
A mean-reverting process is shown, which means that the CT auto effect is negative (corresponding to DT 
autoregressive effects between 0 and 1 for every time interval)

4 Figure 3B shows a so called mean-reverting process, which means, that the CT auto-effect is negative (i.e., discrete-
time autoregressive coefficients are between 0 and 1 for all time intervals). Other types of dynamics are also possible, but 
they are rare in educational and psychological research (cf. Hamaker et al., 2015), which is why we are limiting ourselves 
to this type of dynamics in the present article.
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corresponds to the growth-curve intercept parameter, while the continuous-time inter-
cept ( b∗�ti

= a−1
(

ea�t − 1
)

b ) serves as the linear growth parameter. To illustrate the 
functionality, we consider the deterministic part of Eq. 2 and insert the DT parameter 
constraints of Eqs. 3 and 4 (Oud & Delsing, 2010):

The right part of the equation is composed of the two constraints relating the CT 
auto-effect to the DT autoregressive effect and the continuous-time intercept to the DT 
intercept. E[x0] is the expected value of the freely estimated initial mean. To obtain the 
expected values for other measurement occasions, the value for �t is changed. To illus-
trate this, let us assume �t = t1 − t0 = 1 for the second measurement occasion t1:

Compared to the initial measurement occasion, the expected value for the sec-
ond measurement occasion increases by the additive component 1× b . To obtain the 
expected value for the third measurement occasion t2 , we set �t = 2:

The expected value for t2 increases by the additive component 2× b compared to the 
initial measurement occasion. This can be continued for any measurement occasion. 
Because the CT auto-effect is fixed to a negative value close to zero, which corresponds 
to a DT autoregressive effect approximating 1, the continuous-time intercept part lin-
early increases with longer time-intervals.

To obtain a univariate CT-LCM-SR (Fig. 2), we extend Eq. 6 by a second (dynamic) 
process with a freely estimated auto-effect a and a process mean of zero ( b = 0):

The lambda matrix � = [�1�2] in Eq. 9 relates the observed values of variable x at time 
t to the two processes xlint and xdynt , which represent the growth component and the 
dynamic component, respectively. The states of the two processes xlin and xdyn at time 
t are predicted by the state of the two processes at a previous time point t −�t (Eq. 8). 
The autoregressive matrix is the first element on the right side of the equation. On the 
main diagonal, the autoregressive matrix has the restricted parameter e−.0001�t for the 
linear trend component and the freely estimated autoregression ea�t for the dynamic 

(6)E[xt ] = ea�tE[x0]+ a−1
(

ea�t
− 1

)

b.

(7)E[x1] = e−.0001×1E[x0]+−.0001−1
(

e−.0001×1 − 1
)

b

E[x1] = 1× E[x0]+ 1× b

E[x2] = e
−.0001×2

E[x0]+−.0001−1
(

e
−.0001×2

− 1

)

b

E[x2] = 1× E[x0]+ 2× b

(8)
E

[

xlint
xdynt

]

=

[

e−.0001�t

0

0

ea�t

]

×

[

xlint−�t
xdynt−�t

]

(t)

+

[

−.0001−1(e−.0001�t − 1)

0

0

a−1(ea�t − 1)

]

×

[

b
0

]

(9)with xt = [�1�2]

[

xlint
xdynt

]

= [11]

[

xlint
xdynt

]

= xlint + xdynt .
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component. The off-diagonals are set to zero since the two process components are not 
assumed to directly affect each other. The intercept vector (the second element on the 
right-hand side of Eq. 8) contains the known restrictions for the growth process com-
ponent at the top, and is set to zero at the bottom, because the dynamic process compo-
nent is centered and detrended (fluctuating around the process-mean of zero).

The model can be represented in the SDE (Eq. 2) notation as follows:

Here, it becomes obvious that the trend component is deterministic because the 
random error term is zero. Therefore, the residuals are completely absorbed into the 
dynamic part and are accounted for by CT auto-effect a and CT random error variance 
Q . In addition, the first measurement occasion (T0) is estimated as

where intMEAN represent the mean intercept of the trend component, intSD the standard 
deviation (SD) of the random effects of the intercept, and T0dynSD the residual SD of the 
first measurement occasion entering the dynamic process (the labels of the estimated 
parameters in Eq. 10 and 11 correspond to the labels used in the illustrated example later 
on and Fig. 2). In the random effects version of the CT-LCM-SR, there is an additional 
variance component for the slope of the trend component b ∼ N [bMean, bSD] and a cor-
relation of the random effects ( Corint,b).

To turn this CT-LCM-SR into a model without trend component (i.e., a standard 
CT-AR(1) model), we can set the freely estimated parameter b in Eq. 10 to zero.

An illustrative example of the CT‑LCM‑SR model using PISA data

In the following, we provide an illustrative application of the CT-LCM-SR to data from 
the PISA reading literacy assessment, including a step-by-step tutorial on how to set 
up the CT-LCM-SR in ctsem. To make it as understandable as possible, a simple exam-
ple was chosen, which can, however, easily be extended to more complex models and 
research questions (as outlined in the outlook of this article).

Data

The data stem from the seven currently available PISA waves from 2000 to 2018. For 
each single wave, country-specific mean scores were calculated across all participat-
ing students in each country (see OECD, 2009). For this step of data preparation, the 
R-package intsvy (Caro & Biecek, 2017) was used and the resulting values were addi-
tionally checked with the SPSS macros provided on the OECD website. This was pri-
marily done to ensure that the weighting procedures were accurate (IBM SPSS, 2020; 
OECD, 2021). Furthermore, because data from the achievement tests were processed 
with the Rasch model, the use of plausible values (PVs) is recommended (OECD, 2009; 

(10)d

[

xlin
xdyn

]

(t) =

([

−.0001 0

0 a

]

×

[

xlin
xdyn

]

(t)+

[

b
0

])

dt +

[

0 0

0 g

]

×

[

0

wdyn

]

.

(11)
[

xlint0
xdynt0

]

∼ N

([

intMEAN

0

]

,

[

intSD 0

0 T0dynSD

])

,
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Wu, 2005). Therefore, all analyses were first performed with each PV separately and the 
results were pooled afterwards (OECD, 2009; Rubin, 2004). In PISA, the achievement 
data are represented by five PVs.5 Thus, five data sets were created, one for each PV (see 
OECD, 2009).

The data sets had a hierarchical data structure, with repeated measurements nested 
within countries. For analyses with the ctsem package (Driver & Voelkle, 2017), the data 
sets should preferable be in the long format (see also the ctsem tutorial by Hecht et al., 
2019). Therefore, the data were structured, with all observations of a variable being con-
tained in the same column (in contrast to the wide format, where there is a separate col-
umn for each measurement occasion). The corresponding time of the measurement was 
put in a separate column. Information about which observations were related to which 
country was contained in another column (see Fig. 4).

Sample

The final sample examined in this study consisted of N = 56 PISA countries. It is the same 
sample selected by the OECD (2019a) for the presentation of countries developmental 

Fig. 4 PISA data structured in long format. The column id assigns the measurements to the countries 
creating the hierarchical data structure. The information of when a respective measurement took place is 
contained in the time column

5 Since PISA 2015, there is a shift to including ten PVs. Due to the smaller number of five corresponding PVs in the pre-
vious waves, only the first five PVs were used in the data preparation for the 2015 and 2018 waves in the present study.
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trajectories in mean reading literacy performance. To be included, a country had to have 
participated in at least five PISA surveys between 2000 and 2018.

Measures

PISA reading literacy The primary variable of interest are the countries’ mean estimates 
in PISA reading literacy assessment. Because the reading scales were linked across all 
available PISA waves from 2000 to 2018, they are basically comparable and thus suitable 
to be analyzed longitudinally (OECD, 2019b).

Coding time In the data sets, the time point of measurement was represented as the 
years starting from 2000 as the first measurement occasion coded as t0 = 0 and continu-
ing in three-year intervals (2003 was coded as t1 = 3, 2006 as t2 = 6, and so on; see Fig. 4).

Data analysis procedure

To tackle the guiding research questions (1) whether there was a linear trend in the PISA 
countries’ mean reading scores, whether countries differed in the slope and direction 
of the trend, and (2) how persistent the effect of a potential deviation from the trend (a 
shock) would be, we first computed a series of models. For this purpose, we used the 
ctsem package (Version 3.4.3; Driver et al., 2017; Driver & Voelkle, 2018a, 2021) in R (R 
Core Team, 2021). All models were compared with respect to their fit. Because all mod-
els were nested in the CT-LCM-SR, multiple chi-square difference tests were performed. 
To address the question of whether there is a trend in PISA countries’ mean reading 
literacy scores, we compared the CT-LCM-SR to a CT-AR(1) model, which is a CTM 
without trend component. To answer the question of whether there is also a dynamic 
process in the PISA data, we compared the CT-LCM-SR to a standard linear GCM 
(specified within the continuous-time framework), which is a linear trend model with-
out a dynamic process. The dynamic process describes the effects of short-term influ-
ences (shocks) on countries mean reading literacy development. In addition, to answer 
whether there are significant differences in starting values and trends across PISA-coun-
tries, we compared fixed and random effects variants of all models (i.e., variances of the 
intercept and linear slope were freely estimated vs. fixed to zero).

We present an exemplary interpretation of the estimated parameters of the most rel-
evant model, the CT-LCM-SR, focusing on the CT dynamic parameters. We also present 
and visualize DT parameters for different time-intervals derived from CT parameters 
and study the impact of temporary deviations from the trends on the development of 
countries’ mean PISA reading scores to answer the second research question. Moreover, 
we visualize trends and dynamics of certain PISA countries as examples and show how 
predictions for future states can be made for various time-intervals.

Models

In addition to the CT-LCM-SR, we also run a linear GCM and a standard CT-AR(1) 
model. We included fixed and random effects variants of all models, considering ran-
dom effects for intercept and growth parameters but not for dynamic parameters (model 
specifications of all models can be found in the Additional file  1). These additional 
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models are nested in the CT-LCM-SR model. To obtain a ctsem version of a standard 
GCM from the CT-LCM-SR, we set the dynamic process component to zero, assuming 
a homoscedastic measurement error variance.6 To obtain a standard CT-AR(1) model 
from the CT-LCM-SR, we fixed the growth parameter from the trend component to 
zero. To obtain the random effects variants of the models, we set the respective model 
parameters to be variant across countries (see the tutorial in the last part of this section). 
Pooling of estimates and variance components across the five data sets was carried out 
using the mice package (van Buuren et al., 2015).

Fit Indices and Chi-Square tests To be able to evaluate the relative model fits, we used 
Akaike Information Criterion (AIC; Akaike, 1973) and Bayesian Information Criterion 
(BIC; Schwartz, 1978) as well as the Deviance (twice the negative logarithm of the likeli-
hood). For all three indices, lower values indicate better model fits. Furthermore, we run 
chi-square difference tests for nested models (e.g., Bollen, & Long, 1993). To pool the chi-
square test statistics, the miceadds package (Robitzsch et al., 2017) was used.

Missing data Countries with less than five PISA participations between 2000 and 2018 
were excluded from the analysis to ensure a sufficient data base for modeling trajectories. 
This procedure is in line with the analysis and presentation by the OECD (2019a). The 
remaining proportion of missing values in countries reading literacy scores was 9.4% and 
thus small.

Dealing with missing values is basically model-inherent in CTMs because the length of 
the time-interval between two consecutive measurement occasions is taken into account 
(for a detailed discussion of missing data treatment in CTMs, see Oud & Voelkle, 2014). 
When missing values are left in the data set, they can be addressed using, for example, 
maximum likelihood approaches (under the MAR assumption; Driver et al., 2017; End-
ers, 2010), as it was done in the present application.

ctsem syntax for estimating the CT‑LCM‑SR

In the following, we give a step-by-step tutorial of how to specify and run a CT-LCM-SR 
with the data from PISA using the ctsem package7 (Driver & Voelkle, 2017; Driver et al., 2017) in R (R 
Core Team, 2021).

For continuous-time modeling with ctsem, two functions are crucial. The ctModel 
function is needed to set-up the required model, and the ctStanFit function is needed 
to fit the model to the data. Thus, in order to perform a CT-LCM-SR with the prepared 
PISA data, the first step was to specify the model. For setting up CTMs properly, the 
arguments of the ctModel function have to be understood. The following arguments are 
of key importance within the ctModel function (Driver & Voelkle, 2017; Hecht et  al., 
2019):

6 The MANIFESTVAR matrix in ctsem was used to define the error term parameters of the GCM (see also Driver, 2020, 
and the specification in the Supplemental Material). Another more complicated alternative to  estimate the standard 
GCM’s homoscedastic error term (Fig. 3D) would be to constrain the variance of T0dynSD to q∗�t

(Fig. 3D). While the 
latter approach better captures the nested structure of GCM and CT-LCM-SR, it requires changes in the source code of 
ctsem, which is why using MANIFESTVAR to do this is much easier to implement in ctsem.
7 To install the required ctsem package, we run the usual procedure in R (R Core Team, 2021):
install.packages( "ctsem").
library( ctsem).
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With the type argument, we chose the type of model we want to set-up. In ctsem the 
user has the option of type = “omx” specifying a CTM interfacing to OpenMx (Neale 
et  al., 2016), which is the original procedure of ctsem using frequentist estimation. 
Meanwhile, however, this part is mainly outsourced to an extra package ctsemOMX 
(Driver & Voelkle, 2021). Model type “stanct” interfaces to RStan8 (Stan Development 
Team, 2020) and allows to choose between maximum likelihood, maximum a posteriori, 
or fully Bayesian estimation (Driver & Voelkle, 2017, 2021). In the present application we 
chose type = “stanct” and maximum likelihood estimation for all models.

The argument n.manifest defines the number of variables to be analyzed in a given 
model. Because we wanted to analyze one single variable (countries’ mean reading lit-
eracy scores), we set n.manifest = 1. Furthermore, with manifestNames, the names of 
the variables to be analyzed as labelled in the respective data sets are defined. Reading 
scores were labelled “READ” in our data sets, so we set manifestNames = “READ” (cf. 
Fig. 4). The argument n.latent determines the number of process components we need 
to analyze our variables under study. Because we needed two components for the CT-
LCM-SR (one linear trend and one dynamic component) we set n.latent = 2. With the 
latentNames argument, labels for the process components can be chosen. The number of 
names has to correspond with the n.latent argument. We chose n.latent = c(“lin”, “dyn”). 
The first process component should account for the trends in the data (linear trend) and 
the second should account for the dynamic process (fluctuating around the linear trends; 
Fig. 3A–C).

Next, the model matrices DRIFT, CINT, and DIFFUSION corresponding to Eq. 2 must 
be specified. The size of these three matrices corresponds to the number of process com-
ponents (n.latent). Thus, in our application, the drift matrix A (n.latent × n.latent) was a 
2× 2 matrix. To model the linear trend component, the auto-effect of the first process 
had to be set to a negative value close to 0. In ctsem this specification is made automati-
cally when a parameter on the main diagonal of the drift matrix is set to zero. In addi-
tion, the cross-effects between the two process components were also set to zero because 
trends and dynamics are independent in CT-LCM-SR. It was only the auto-effect of the 

8 DTMs are also possible via type = ”standt” (Driver & Voelkle, 2018a).
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dynamic process that was freely estimated by setting DRIFT = matrix(c(0, 0, 0, “a”)). The 
diffusion matrix Q looks very similar because in the CT-LCM-SR, we also only have a 
single continuous-time error process: DIFFUSION = matrix(c(0, 0, 0, “q”)). The continu-
ous-time intercept vector b (n.latent × 1) has a special role in the CT-LCM-SR specifica-
tion in ctsem as it serves as a slope parameter in the trend process and therefore has to 
be freely estimated. As explained above, the continuous-time intercept was set to 0 via 
CINT = c(“b”, 0).

Because the first measurement occasion cannot be regressed on a previous occa-
sion, dynamic models must be initiated somehow. By default, ctsem uses a “predeter-
mined” model with freely estimated parameters at the first time point (Driver et  al., 
2017). To model the linear trends of the CT-LCM-SR in ctsem (using Eq. 2), T0MEANS 
plays a special role and serves as the (freely estimated) intercept. Since the second 
process is (within-unit) centered in the CT-LCM-SR, it was restricted to be zero. So 
we set T0MEANS = c(“int”, 0). Because the covariances of the initial time-points of 
both processes should be uncorrelated in the CT-LCM-SR, we set the 2× 2 matrix to 
T0VAR = matrix(c(“intSD”, 0, 0, “T0dynSD”)).

The two further arguments MANIFESTMEANS and MANIFESTVAR can be used to 
specify manifest components such as residuals or measurement errors (for more details, 
see Driver et al., 2017). In our application, we did not account for measurement error 
and set both to zero.

Finally, the LAMBDA (cf. Eq. 9) matrix relates the observed scores to the process com-
ponents of the model (components are to be represented in the columns and the man-
ifest variables in the rows): LAMBDA = matrix(c(1, 1)).9 The complete specification is 
stored in a model object and reads as follows:

After model specification, we can print and check the model object with the command 
head(CT_LCM_SR$pars, 20). In addition, some further modifications can be made, such 
as fixing individual parameters to a certain value or specifying random effects (Driver 
& Voelkle, 2018b). In the current application, we tested if countries differed in terms of 
their initial level at the first PISA wave in 2000 (random intercept) as well as in terms 

9 This specification is only possible in the case of linear trends. We provide an example code in the supplemental mate-
rial how to include quadratic trends in ctsem (and examples can also be found on GitHub; Driver, 2022). In the case of 
quadratic effects, the PARS argument has to be used and the LAMBDA matrix must be employed in a different way.
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of direction and slope of the trends (random slope) and specified random effects for 
t0m (random intercept) and b_lin (random slope): CT_LCM_SR$pars[c(1, 7),]$indvary-
ing < -TRUE. Any parameter that should vary across units (in this case parameter one, 
which is the intercept, and parameter seven, which is the slope) must be set to indvary-
ing = TRUE in the model object.

Once all parameters were properly specified, the model could be fitted to the PISA 
data. For this purpose, the ctStanFit function was used. For maximum likelihood 
estimation we set the following additional arguments (see Driver & Voelkle, 2021): 
CT_LCM_SR_fit < -ctStanFit(datalong = PISA_PV1, ctstanmodel = CT_LCM_SR, opti-
mize = TRUE, nopriors = TRUE).

Descriptive statistics

For the sample of N = 56 countries (level-2 units) included in the analysis the descriptive 
statistics of the mean reading literacy scores for each of the seven waves are reported in 
Table 1. In the present sample, the overall mean across the 56 countries and all seven 
waves was 473 PISA points (SD = 45.4), pooled over the five data sets.

Model comparisons and fit statistics

Model comparisons and fit statistics provided first insights regarding the research ques-
tions. In Table 2, the deviance, AIC and BIC of the six models are presented. The random 
effects models outperformed the fixed effects variants in all cases. This implied consider-
able differences in initial levels and trends across countries’ trajectories of mean PISA 
reading literacy scores. Furthermore, all three information criteria showed the smallest 
values for the CT-LCM-SR with random effects, indicating the best model fit of all six 
models. In addition, we also performed chi-square tests for nested models. In all cases 
the chi-square test was significant at a two-tailed significance-level of 0.05, also indicat-
ing the best model fit for the random effects CT-LCM-SR.10 Thus, the comparisons of 

Table 1 Pooled Means and Standard Deviations of PISA Reading Literacy Scores Aggregated at the 
Country Level

The descriptive statistics were calculated based on the countries’ mean scores that form the data basis of the longitudinal 
analysis in the present study. For the 2015 and 2018 waves, the achievement data in PISA were represented by 10 plausible 
values instead of 5. Due to the longitudinal modeling, only the first 5 plausible values were considered in the present study
a The overall N represents the number of data points in the data set (number of countries in the sample * the respective 
number of repeated measurements). A total of 56 countries were included in the sample the inclusion criterion being at 
least 5 PISA participations between 2000 and 2018

Time points PISA waves M SD Range N

T1 2000 474.8 53.9 322.0–549.1 42

T2 2003 482.6 41.0 374.1–543.8 40

T3 2006 466.0 51.3 311.5–556.8 53

T4 2009 470.5 43.9 370.1–540.0 56

T5 2012 475.3 45.0 384.6–544.9 56

T6 2015 473.4 42.2 359.1–527.7 54

T7 2018 470.9 40.9 371.3–525.6 54

- Overall 473.0 45.4 311.5–556.8 355a

10 Moreover, we tested a GCM with additional quadratic effects. The quadratic effects did not have a statistically signifi-
cant contribution and were therefore not considered in further analysis (e.g., Voelkle, 2008).
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these models provided first support for the existence of trends, differences in trends and 
initial levels across countries, and a dynamic process.

Results of the CT‑LCM‑SR for the PISA countries’ reading literacy scores
The parameter estimates of the random effects CT-LCM-SR, pooled over the analyses 
of all five data sets, are shown in Table 3 (parameter estimates of the CT-AR(1) and the 
GCM can be found in the Table  5 in Appendix). The CT-LCM-SR yielded eight esti-
mated parameters, which were all statistically significantly different from zero. This 
supported the use of the CT-LCM-SR, which accounts for dynamics and trends in the 
data. Additionally, this also supported the use of the random effects CT-LCM-SR, which 
allows for differences in terms of initial values and slopes across countries.

Examining trends in PISA countries’ mean reading literacy scores

Five parameters of the CT-LCM-SR were related to the trends, namely the mean inter-
cept, the intercept standard deviation (SD), the growth rate, the growth rate SD, and the 
intercept-growth correlation. The interpretation of these five parameters corresponds 

Table 2 Comparison of fit indices in models fitted to PISA data

AIC Akaike information criterion, BIC Bayesian information criterion, FI fixed intercept, FG fixed growth parameter, RI random 
intercept, RG random growth parameter. The CT‑AR(1) has just intercepts, but no growth parameters
a Details on this model are provided in Table 3

Models Number Est. 
Parameters

Deviance AIC BIC

Fixed effects models

 GCM (FI-FG) 3 3715.1 3721.1 3733.1

 CT-AR(1) model (FI) 4 3043.7 3051.7 3067.6

 CT-LCM-SR (FI-FG) 5 3009.9 3019.9 3039.8

Random effects models

 GCM (RI-RG) 5 3007.8 3019.8 3043.6

 CT-AR(1) model (RI) 6 3005.0 3015.0 3034.8

 CT-LCM-SR (RI-RG)a 8 2984.9 3000.9 3032.6

Table 3 Parameter Estimates of the CT-LCM-SR for PISA Countries’ Mean Reading Literacy Scores 
Development

The random effects CT‑LCM‑SR contains an eighth parameter, the intercept‑growth correlation, which was estimated to be 
− 0.61 (SE = 0.13, p < .001)
a  The labels refer to the parameter labels used in Eq. 10 and 11 as well as in the presentation of the R code (p. 23) and Fig. 2

Parameter  (labelsa) Estimate SE t p

Fixed effects

 Intercept (int) 464.80 7.37 63.034  < .001

 Linear growth (b) 0.43 0.20 2.148 .037

 CT auto-effect (a) − 0.39 0.13 − 3.099 .003

Variance components (in SD metric)

 Intercept SD (int_SD) 53.50 5.57 9.597  < .001

 Growth SD (b_SD) 1.06 0.32 3.360 .002

 Initial residual SD (T0dynSD) 9.95 0.86 11.527  < .001

 Diffusion SD (q) 18.58 2.99 6.206  < .001
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with the standard parameters of a GCM with random effects. The estimated mean 
intercept across all countries was 464.8 PISA points (SE = 7.37), and the corresponding 
intercept standard deviation was 53.50 (SE = 5.57). The estimated growth rate was 0.43 
(SE = 0.20) per year, which implies an average increase of 1.29 PISA points per meas-
urement occasion (3 * 0.43) across all countries. The corresponding standard deviation 
was SD = 1.06 (SE = 0.32). Thus, for instance, for a country with a growth rate of one SD 
below the average, a negative trajectory is expected and thus a loss of − 0.63 (0.43–1.06) 
PISA points per year on average (and − 1.89 for the three-year interval between adja-
cent PISA waves). The estimated correlation of − 0.61 (SE = 0.13) between intercept and 
growth rate indicated that countries with lower mean scores at the initial PISA wave in 
2000 tended to make larger gains in mean reading literacy scores on the follow-up sur-
veys than countries with higher mean scores in 2000.

Thus, with respect to the first research question, we found a significant overall increase 
of 1.29 PISA points per wave or 0.43 PISA points per year in the sample of 56 PISA 
countries. However, countries differed significantly in the slope and even the direction 
of the trend (e.g., a country that is one SD below the average is expected to have a nega-
tive trend). In addition, we found that countries also differ substantially in terms of their 
initial values at the first measurement occasion in 2000, and that countries with lower 
initial scores tend to achieve larger gains in their mean reading literacy scores across 
subsequent PISA waves.

Examining the dynamics in the development of PISA countries’ mean reading literacy 

scores

While the trend parameters of the CT-LCM-SR describe static change processes 
(Fig.  3A), the parameters of the dynamic process component describe fluctuations 
(Fig.  3B). These fluctuations were of substantive interest with respect to the second 
research question, which concerned the question of how long deviations from the trends 
(shocks) influence a country’s development of mean PISA reading literacy performance. 
As mentioned above, such deviations can be caused by short-term support programs, 
or temporary investments in the education system as well as a financial crisis or a 
pandemic.

The five parameters related to the first process component provide information 
about the linear trends in the data and center the residuals that enter the dynamic pro-
cess at the within-country level (Fig. 3A–C). Thus, the dynamic process can be consid-
ered as detrended as the growth component accounts for the linear trends in the data 
(e.g., Usami et al., 2019). The remaining three parameters of the CT-LCM-SR, namely 
the auto-effect, the diffusion variance, and the initial residual variance component, are 
related to the dynamic process. The initial variance component represents the residual 
variance of the first measurement occasion entering the dynamic process and, thus, 
yields the initial (predetermined) values of the dynamic process in the CT-LCM-SR. The 
diffusion variance represents the CT error variance, which is the part of the variance of 
the process that is completely random (Oud & Jansen, 2000). The CT auto-effect can be 
used to study the time course of the impact of temporary deviations (also referred to as 
shocks) on the process under study and was therefore the relevant parameter to answer 
the second research question.
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The interpretation of CT auto-effects is different from autoregressive effects of DTMs. 
Typical for stable or mean-reverting dynamical processes is the negative value of the 
auto-effect (Ryan et al., 2018). Translated to DTMs, negative CT auto-effects mean that 
the corresponding DT autoregressive parameters are between 0 and 1. Furthermore, DT 
autoregressive effects get smaller for longer time-intervals between consecutive meas-
urement occasions in such stable processes. The negative CT auto-effect refers to the 
fact that if the value of a time series at time t takes a position far from the process mean 
the process subsequently tends to return to the process mean with the opposite sign 
to the deviation (assuming that there are no further shocks afterwards). Furthermore, 
a negative CT auto-effect indicates that the more distant a deviation from the process 
mean at a time t , the greater is the speed with which it tends to return to the process 
mean (assuming the same underlying auto-effect). Likewise, the more negative the auto-
effect, the faster the process tends to return to the process mean after a deviation from 
the trend (for the same time-interval).

Because DT autoregressive effects for various time-intervals can be derived from the 
estimated CT auto-effect, this parameter is useful to answer the question of how per-
sistently deviations from the trend affected countries’ development of mean reading 
literacy achievement. The CT auto-effect was estimated to be −  0.39 (SE = 0.13). It is 
important to note that the auto-effect was the same for all countries of the sample in this 
model (no random effects), unlike the (country-specific) parameters of the trends. To 
better understand the dynamic effects and find an answer to the second research ques-
tion, DT autoregressive parameters can be derived from the CT auto-effect for various 
intervals.11 DT autoregressive effects can be interpreted as “the amount of within-per-
son carry over effect” from one measurement occasion to the next (Hamaker et al., 2015, 
p. 10 l. 1312). CT modeling additionally provides information on the dependence of the 
DT autoregressive effects on the time interval length between measurement occasions.

Table 4 Discrete-time parameters for autoregression (AR) and process error for varying time-
intervals derived from underlying continuous-time parameters

CI confidence interval. A three‑year interval represents the time between two PISA surveys. Values for the time‑intervals 1, 2, 
4 and 5 are interpolations, because there is no data for such time‑intervals in the data sets

Time‑interval (years) DT AR effects 95% CI for AR effects DT process 
error (SD)

1 .681 [.841; .521] 6.91

2 .471 [.684; .257] 10.08

3 .329 [.546; .112] 11.53

4 .233 [.433; .033] 12.19

5 .167 [.342; − .009] 12.50

6 .121 [.271; − .029] 12.64

9 .048 [.136; − .039] 12.75

11 In multivariate models the same can be done for all lagged parameters including cross-effects (e.g., Ryan et al., 2018).
12 Recognize the difference in interpretation between fixed and random effects models discussed by Hamaker et al. 
(2015) in the same article.
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Deriving discrete‑time parameters as functions of underlying continuous‑time parameters

Using Eq. 3, we can calculate DT parameters for arbitrary time-intervals from the esti-
mates of the underlying CT parameters. In Table  4 we present a range of DT autore-
gressive coefficients and the related confidence intervals. We can do the same for the 
diffusion variance and derive DT error variances, using Eq. 5 (Table 4). For longer time-
intervals, the autoregressive coefficient becomes smaller, whereas the error variance 
becomes larger (Oravecz et al., 2018). DT autoregressive effects are usually interpreted 
in the literature as indicating the stability or the inertia of the construct under study 
(e.g., Hamaker et al., 2015). Thus, they provide information on how much of the devia-
tion at time ti is carried over to ti+1 (relative to the process mean) on average. To address 
the second research question, the time course of the autoregressive effects and the asso-
ciated confidence intervals can be used (Table 4). The confidence interval of the autore-
gressive effect for the five-year interval is the first that includes zero, that is, there is no 
evidence for a population autoregressive effect larger than zero. An autoregressive effect 
of zero for a time interval of five-years or longer implies that after this period earlier 
deviations from the trend have no predictive value. To visualize this effect, DT coeffi-
cients can be represented as continuous functions of the (time independent) CT param-
eters and the length of time-interval. As can be seen in Fig. 5, for increasing length of the 
time-interval between measurement occasions, the DT autoregressive effect approaches 
zero (Fig. 5A), while the error standard deviation approaches about 13 (Fig. 5B).

Representing countries‑specific expected trajectories and making predictions for future 

states

Unlike DTMs, in which processes can only be represented with respect to the investi-
gated interval (see Fig. 1B), CTMs such as the CT-LCM-SR allow to represent the time 
course of developmental trajectories. Combining trends and dynamics, Fig. 6 shows the 
country-specific trajectories of four PISA countries in the sample. One major advantage 
of CTMs like the CT-LCM-SR is that predictions can be made with respect to any time-
interval. If PISA reading literacy scores were analyzed using a DTM, the predictions of 
future states would be limited to the three-year intervals (and their multiples), because 

Fig. 5 Discrete-time autoregression (A) and Error standard deviation (B) as Functions of Underlying 
Continuous-Time Parameters and the Length of Time-Intervals Between Measurement Occasions. Dotted 
lines represent the 95% confidence interval of the discrete-time autoregressive effects corresponding to 
Table 4 column 3
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of the time-interval dependency of DTMs. Moreover, unlike predictions made by a sim-
ple GCM, the CT-LCM-SR uses the information of the residuals, which are fluctuating 
around the static trends (the grey dotted lines in Fig. 6). Predictions of a GCM would 
always lie exactly on the static trend and would not take into account the dynamics of 
the residuals. Figure 6 illustrates the mean reverting dynamic process fluctuating around 
the country-specific static trends. The size of the autoregressive effect decreases as the 
length of the time-intervals increases, representing the impact of deviations (shocks) on 
later states over time. The autoregressive effect reaches zero after a certain length of the 
time-interval (see also Fig. 5A) indicating that there is no further influence of the previ-
ous deviation. For long time-intervals the autoregressive effect is zero and the best pre-
diction lies on the linear trend. Thus, the point predictions return to the static linear 
trend process after a certain interval (Fig. 6).

Discussion
The aim of the present study was to discuss advantages of CTMs, especially the newly 
proposed CT-LCM-SR, for longitudinal data analysis in the education sciences and to 
provide the reader with an easy-to-follow introduction to specifying and interpreting 
CTMs with the help of an illustrative example using PISA data.

In the first section, we discussed that CTMs are often better suited to capture the 
continuous nature and development of constructs in educational research than DTMs. 
Using CTMs, we can thus better align our statistical models with our theories of change 

Fig. 6 Model implied expected trajectories given past observations of four PISA countries’ mean reading 
literacy score development. CNT = country code, Slope = country specific growth rate (dotted lines). The 
solid black line represents the expected model implied trajectory given past observations for a respective 
country. The predictions are a combination of both process components (linear trend and dynamics; cf. 
Eq. 8, 9). The slope parameter estimates are obtained from the trend component of the CT-LCM-SR and are 
represented by the dotted lines. The deviations from the trend and the subsequent carry-over effects are 
described by the dynamic component of the CT-LCM-SR
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that are the subject of educational research. This includes not only variables at the level 
of individuals but also variables that describe characteristics of entire education systems 
as in the exemplary application with PISA data. In addition, we outlined other advan-
tages of CTMs over DTMs associated with the time-interval dependency of DTMs, such 
as limitations in cross-study comparisons, limitations in the procedures of data collec-
tion, and the lack of relevant information regarding the dynamic processes.

Based on this, we developed the CT-LCM-SR, a CTM variant that is suitable for a 
range of typical longitudinal research questions. The CT-LCM-SR takes into account 
both the dynamic process as well as trends in the data. Trends are often of substantive 
interest in the education sciences and are also relevant for dynamic models because 
unaccounted trends can lead to biases in parameter estimates (Asparouhov et al., 2018; 
Núñez-Regueiro et al., 2021; Walls & Schäfer, 2006). The process’ dynamics can provide 
information about the stability or variability of constructs, their self-related structure, 
and about reciprocal effects of multiple variables in multivariate models. In addition to 
the advantage that (1) the CT-LCM-SR provides information on both trends and dynam-
ics, the use of the CT-LCM has further advantages. (2) Trends and dynamic processes 
are clearly separated in the CT-LCM-SR, meaning that trends and dynamics cannot 
influence or “compete” with each other. (3) The interpretation of the parameters follows 
the interpretation of CTMs and GCMs. (4) All parameters of the CT-LCM-SR describe 
the process under study independently of the length of time-intervals in a given study 
(Delsing & Oud, 2008). Finally, (5) both the standard linear GCM and the CT-AR(1) 
model are nested within the CT-LCM-SR, and thus, these models can be tested against 
the CT-LCM-SR using chi-squared difference testing. In addition, with the CT-LCM-SR, 
we can take advantage of all the other benefits associated with CTMs.

In the second part, we demonstrated the application of the CT-LCM-SR with the R 
package ctsem (Driver & Voelkle, 2017, 2021). The analysis was guided by two exemplary 
research questions. First, we wanted to examine whether there is a significant trend in 
the mean PISA reading literacy scores of countries over the period from 2000 to 2018, 
and whether countries differ in the slope and direction of trends. Second, we aimed to 
study the stability of education systems when deviations from the trend occur. Examin-
ing the persistence of deviations is relevant to study the system’s resilience against dis-
turbances caused by different influences.

Regarding the first research question, we found an overall increase in PISA countries’ 
mean reading literacy scores. However, countries differed considerably in the slope and 
the direction of trends. Moreover, countries also differed with respect to the initial levels 
at the first measurement occasion in 2000. We found that countries with lower scores at 
the first measurement occasion tended to achieve larger gains in mean reading literacy 
scores on the follow-up surveys than countries with higher initial scores.

Regarding the second research question, we found a significant continuous-time 
dynamic process of fluctuations around the trends. From this dynamic process it can be 
inferred how long temporary deviations from the trends are associated with later states 
of the variable(s) under study and how much of the deviation is carried over to future 
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states depending on the time that has passed. Using the CT auto-effect, we derived DT 
autoregressive effects for various time-intervals and found that carry-over effects (rep-
resented by DT autoregressions) for five-year or longer time-intervals were not sig-
nificantly different from zero. This means that both positive and negative influences on 
countries’ mean reading literacy scores that led to temporary deviations from the trends 
disappeared on average after about five years.

Limitations and future directions
By introducing the CT-LCM-SR, the current article suggests and illustrates an advanced 
method with several benefits and potentials for longitudinal studies in the education sci-
ences. However, the presented work is not without limitations.

First, it is necessary to consider that the application presented is a simplified example 
chosen in order to provide an easy introduction to the potential benefits, practical mod-
eling, and interpretation of CTMs. Therefore, the substantive value of the results is lim-
ited. Only a single variable was analyzed, the mean PISA reading scores of countries. For 
some applications, such as predictions of future states, univariate models can already 
provide useful information (e.g., Bulteel et al., 2018). Of course, however, research ques-
tions are often more complex. In the present application, for example, it is only pos-
sible to speculate on why temporary deviations from trends occur, as we are studying 
shocks of unknown cause. In practical applications, it might be of interest to examine 
the impact of a specific intervention (or crises). This requires the inclusion of an input 
that occurs at specific points in time in the model (see Driver & Voelkle, 2018b for the 
implementation of such models in ctsem). Such models make it possible to examine, for 
instance, when the input reaches the maximum effect on the process under study and 
after what period of time the effect of an input vanishes.

Moreover, the dynamic interplay between two or more parallel processes might be of 
researchers’ interest (see, e.g., Jindra et al., under review, to be published in the same spe-
cial issue applying a bivariate CT-LCM-SR). Such models allow, for instance, to explore 
the time interval in which one process has a maximum effect on the other and vice versa 
(e.g., Hecht & Zitzmann, 2021b). A typical question for educational research might be 
after how much time a change in a student’s achievement does develop its maximum 
effect on his or her self-concept. R code for studying the reciprocal effects of two vari-
ables over time in a bivariate CT-LCM-SR is provided in the Additional file 1.

In addition, the use of covariates plays a crucial role in practical research, including 
the study of trends in countries’ mean PISA scores, for which so-called adjusted trends 
have been reported meanwhile (OECD, 2014). Such more complex CTMs with predic-
tors and covariates can be implemented with ctsem (e.g., Driver & Voelkle, 2018b).

It is also important to keep in mind, that development at the country-level was exam-
ined, not at the student level. While short-term interventions might not change the 
performance of the entire education system permanently, they might have effects on 
the students’ cohort. However, statements concerning developmental trajectories of 
students require repeated measurements of the same students. A first application of a 
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bivariate CT-LCM-SR on the student-level is provided by Jindra et al. (under review) to 
be published in the same special issue.

Another possibility in ctsem is specifying measurement models (e.g., Hecht et  al., 
2019). In the presented application with PISA data, a typical three-step procedure was 
chosen to address measurement error (cf. OECD, 2009). We first calculated aggregate 
country means for each of the five plausible values and for all seven available PISA waves 
and created five data sets (so that all plausible values could be considered). These data 
sets were then used to conduct all analyses separately. Finally, the obtained results were 
pooled across the five separate analyses (Rubin, 2004).

The CTMs presented must also be considered with some limitations and model 
assumptions in mind. In the present article, we have restricted ourselves to univariate 
stable dynamic processes, also called mean-reverting processes (Ryan et al., 2018). That 
implies that the corresponding DT autoregressive effects are between 0 and 1 for any 
time-interval. In principle, however, CTMs for explosive processes, meaning DT autore-
gressions greater than 1 (e.g., Driver & Voelkle, 2021), or processes with negative DT 
autoregressions, may be of interest as well (Fisher, 2001). In this article, we furthermore 
restricted ourselves to the representation of first-order CTMs, which should be suita-
ble for representing many processes studied in educational research (Sivo & Fan, 2008). 
However, modeling higher-order models is also possible and might be useful in certain 
applications (e.g., Lüdtke & Robitzsch, 2021; Oud, 2010; Oud et al., 2018). Furthermore, 
in the models presented, the dynamic effects were assumed to be invariant over the 
period studied. This means, for example, that the CT auto-effect does not change and the 
DT autoregressive effects change only as a function of the length of the time-interval but 
not with time itself. However, more complex models with time-varying dynamic effects 
are also possible (e.g., Driver & Voelkle, 2021; Oud & Jansen, 2000). In addition, in the 
application presented, the dynamic effects were assumed to be the same across all obser-
vation units. Random effects were only included in the trend components but not in the 
dynamic process. This is a limitation that can be overcome within ctsem because fully 
hierarchical models can be specified in which all parameters vary across units (Driver & 
Voelkle, 2018a). Future simulation studies are needed to further investigate the estima-
tion performance of CTMs in general and the CT-LCM-SR in particular with respect to 
different influencing factors, such as sample size and length of individual time series (for 
first sample-size recommendations and a discussion of the compensating effects of sam-
ple size N and length of time series T in CTMs, see Hecht & Zitzmann, 2021b).

In the CT-LCM-SR, we proposed to consider linear trends. The use of linear trends is 
not without criticism and can usually only be justified for the duration of specific time 
periods, as they always tend toward infinity in the long run (e.g., Oud, 2010). However, 
linear trends have a clear and well-known interpretation, which can be an advantage. 
Nevertheless, other types of trends might be considered and in future research, continu-
ous-time models that incorporate other than linear trends could be developed or further 
refined (e.g., Oud, 2010; Voelkle & Oud, 2015). For example, in the PISA example, we 
also tested a GCM with nonlinear (quadratic) components, which did however not reach 
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significance. We provide example code for setting up GCMs and the CT-LCM-SR with 
quadratic trend components in ctsem (similar code can be found on the GitHub page of 
ctsem; Driver, 2022).

In the CT-LCM-SR as applied in the present article, it remains uncertain how a given 
shock affects the trend. Models, which allow a shock to influence the direction and shape 
of the trend, are also possible (Driver & Voelkle, 2018b).

In educational research, specific data situations may occur which demand appropriate 
analysis strategies like resampling and missing data imputation techniques (e.g., Weir-
ich et al., 2021). Future research should generate guidance on how to address such edu-
cational research specific challenges when applying CTMs. Furthermore, estimation of 
CTMs might become very time-consuming, especially in educational large-scale assess-
ment contexts. One promising optimization approach to reduce run times for continu-
ous-time models has been proposed by Hecht and Zitzmann (2020) based on the work 
of Hecht et al. (2020).

Finally, although CTMs provide information about the development of dynamic 
effects, interpolations to time-intervals that have not been investigated should be con-
sidered with caution. While it may be useful to explore intervals of maximum effects 
based on CTMs (Hecht & Zitzmann, 2021a), it is not advisable to draw conclusions 
about change processes that occur at much smaller intervals, for example days or hours, 
based on annual surveys, for instance. Thus, even when using CTMs, the underlying 
theory of change should still guide decisions about the design of longitudinal studies. 
However, equal time-intervals between subjects and measurement occasions are not 
necessary when using CTMs, which allows for much greater flexibility in data collection 
than when using DTMs (see Voelkle & Oud, 2013, for an argument why it can even be 
beneficial to choose time-intervals of different length between individuals and measure-
ment occasions).

Conclusion
In the present article, we presented continuous-time modeling as a suitable approach to 
align statistical models for longitudinal data analysis with theories of change, especially 
to represent the continuous nature of variables and observation units. It is essential 
to align theories and statistical models to obtain valid answers to the research ques-
tions. In addition, the use of CTMs comes with other considerable advantages which 
were mentioned. Based on this, we proposed the CT-LCM-SR, which is a CTM vari-
ant and a suitable model to address many research questions in the education sciences. 
The CT-LCM-SR yields parameters, which are independent of specific time-intervals, 
thus represents developmental processes on a continuous-time scale. We illustrated the 
implementation and interpretation of the CT-LCM-SR with PISA data and, thus, gave 
the reader an introduction to the use of CTMs and the advantages and functionality of 
the newly proposed CT-LCM-SR.

Appendix
See Table 5.
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(model)  Autoregressive model
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CALT  Continuous-time autoregressive latent trajectory (model)
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(model)  Continuous-time autoregressive (model)
CT-LCM-SR  Continuous-time latent curve model with structured residuals
CT-VAR  
(model)  Continuous-time vector autoregressive (model)
CTM  Continuous-time model
DTM  Discrete-time model
GCM  Growth-curve model
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